数学之导数大全

常用导数大全

把常用的导数求法进行汇总,作为其他学习的基础。

y=Cy=C, y=0y^{'}=0

y=xny=x^n, y=nxn1y^{'}=nx^{n-1}

y=sinxy=sinx, y=cosxy^{'}=cosx

y=cosxy=cosx, y=sinxy^{'}=-sinx

y=tanxy=tanx, y=1cos2x=sec2xy^{'}=\frac{1}{cos^2x}=sec^{2}x

y=cotxy=cotx, y=1sin2x=csc2xy^{'}=-\frac{1}{sin^2x}=-csc^2x

y=secxy=secx, y=secxtanxy^{'}=secx tanx

y=cscxy=cscx, y=cscxcotxy^{'}=-cscx cotx

y=lnxy=lnx, y=1xy^{'}=\frac{1}{x}

y=logaxy=log_a^x, y=1xlnay^{'}=\frac{1}{xlna}

y=exy=e^{x}, y=exy^{'}=e^{x}

y=axy=a^x, y=axlnay^{'}=a^xlna

y=arcsinxy=arcsinx, y=11x2y^{'}=\frac{1}{\sqrt{1-x^{2}}}

y=arctanxy=arctanx, y=11+x2y^{'}=\frac{1}{1+x^{2}}

y=arccotxy=arccotx, y=11+x2y{'}=-\frac{1}{1+x^2}

1x=1x2\frac{1}{x}'=-\frac{1}{x^2}

对于一些常见运算的导数

u±v=u±vu \pm v = u' \pm v'

(uv)=uv+uv(uv)'=u'v+uv'

uv=uvuvv2\frac{u}{v}'=\frac{u'v-uv'}{v^2}

链式求导法则

dydx=dydududx\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}

举个栗子

y=sin10xy=\sin^{10}x,求yy'

假设u=sinxu=\sin x y=u10y=u^{10},则

dydx=dydududx\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}

=du10dudsinxdx=\frac{du^{10}}{du}\frac{d sinx}{dx}

=10u10cosx=10u^{10}cosx

=10sin9xcosx=10\sin^9 x \cos x

# math 
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×