贝叶斯网络(四)--完整数据集下的参数学习

本节主要讲完整数据集下的参数学习, 在贝叶斯网络中参数就是计算路径概率的时候,每条连边的概率。对于这个概率主要有两种做法,这一种是 频率学派, 一种贝叶斯学派。频率学派这种方法是最容易理解和做的,直接调过证明过程,看一个小例子。看如图1的概率关系。MFRm0m_{0}m0​badOm0m_{0}m0​badOm0m_{0}m0​badOm0m_{0}m0​badOm0m_{0}m0​badNm0m

贝叶斯网络(三)--完整数据集下的结构学习

上一个章节中,讲到了贝叶斯网络常用的评分函数,本节主要讲下搜索的算法,搭配上搜索算法,对于贝叶斯网络的结构学习就完整啦。贝叶斯网络的结构学习问题是一个NP-hard问题,所以实际上计算中并不是对所有的结构分别计算并且评分的,而是采用搜索算法按照某种评分在可能的拓扑结构中进行搜索来获取结构。最基本的搜索算法是启发式的局部搜索算法,主要是K2搜索,Hill-climbing算法、随机重复爬山算法、禁忌

贝叶斯网络(二)--完整数据下结构学习

本节介绍在完整数据集合下如何来构建概率图的模型。主要分为两个部分,一部分是结构的学习,一部分是参数的学习。结构学习基于评分-搜索的结构学习基于评分-搜索的结构学习主要有两部分组成,就是评分函数和搜索算法。常用的评分函数有BDe评分函数。MDL评分函数和BIC评分函数,搜算法包括启发式局部搜索算法和全局搜索算法。BDe评分函数基于BDe评分函数的结构学习是以贝叶斯统计学为理论基础的,主要的思想是假设

贝叶斯网络(一)--有向网络结构

贝叶斯网络一般是指带有概率信息的有向无环图。贝叶斯网络的信息有两部分组成。首先是表示独立信息的一个网络结构S,S中每个节点表示特定域中的一个概念或者变量,节点间的弧表示了可能的因果关系,体现了域知识的特征。其次每个节点都负有一个与该变量相联系的概率分布函数(CPD), 如果概率是离散的,那么在给定了父母节点的时候取不同值的条件概率表(CPT).CPT体现了域知识的定量方面的特征。可见,贝叶斯网络是

贝叶斯网络(零)--概率图网络框架

本节主要介绍为贝叶斯网络网络开个头,介绍一些名词和背景知识。贝叶斯网络对于概率图而言是一个很大的话题,以边的属性作为区分可以分为两种模型,有向图模型和无向图模型。其中无向图称为马尔可夫网络,视觉领域有比较大的应用,而有向图也就是BN(belief network).当然也有无向图和有向图相结合的网络,称为链图(Chain graph)。图1给出了一个完整的架构,当然这些模型具有一定的转换性,通过降

因果推断(十二)--贝叶斯网络

之前的章节中咱们已知介绍给定因果图关系以后如何分析图中各个因素之间的关系,对撞路径等等。今天这篇文章中咱们主要介绍一下贝叶斯网络的雏形,开启因果推断的核心区域的探索。条件独立与图咱们在训练模型的时候经常会说条件变量独立,或者是独立同分布这样的名词,那么条件独立怎么在因果中使用并且怎么给出一个比较客观的定义呢?令V={V1,V2...}V=\{V_{1}, V_{2}...\}V={V1​,V2​.
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×